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Hippocampal Shape Modeling Based on a Progressive
Template Surface Deformation and its Verification
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Abstract—Accurately recovering the hippocampal shapes
against rough and noisy segmentations is as challenging as
achieving good anatomical correspondence between the individual
shapes. To address these issues, we propose a mesh-to-volume
registration approach, characterized by a progressive model
deformation. Our model implements flexible weighting scheme
for model rigidity under a multi-level neighborhood for vertex
connectivity. This method induces a large-to-small scale deforma-
tion of a template surface to build the pairwise correspondence
by minimizing geometric distortion while robustly restoring the
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individuals' shape characteristics. We evaluated the proposed
method's 1) accuracy and robustness in smooth surface recon-
struction, 2) sensitivity in detecting significant shape differences
between healthy control and disease groups (mild cognitive im-
pairment and Alzheimer's disease), 3) robustness in constructing
the anatomical correspondence between individual shape models,
and 4) applicability in identifying subtle shape changes in relation
to cognitive abilities in a healthy population. We compared the
performance of the proposed method with other well-known
methods—SPHARM-PDM, ShapeWorks and LDDMM volume
registration with template injection—using various metrics of
shape similarity, surface roughness, volume, and shape deformity.
The experimental results showed that the proposed method gen-
erated smooth surfaces with less volume differences and better
shape similarity to input volumes than others. The statistical
analyses with clinical variables also showed that it was sensitive in
detecting subtle shape changes of hippocampus.
Index Terms—Brain, hippocampus, magnetic resonance

imaging (MRI), progressive model deformation, shape analysis.

I. INTRODUCTION

T HE HIPPOCAMPUS has attracted researchers' attention
because its atrophy has been identified as marker for the

development of Alzheimer's disease [1], [2], and has also been
related to mild cognitive impairment [2]–[4], schizophrenia [5],
[6], and epilepsy [7]. To quantitatively assess hippocampal at-
rophy, volumetric measurements on magnetic resonance (MR)
images [8], [9] have been often applied, as volume changes are
features that may explain atrophy or inflammation due to ill-
ness. However, volumetric analyses may not reveal the true as-
sociation between local deformations and disease or risk factors.
For example, the increase in volume on enlarged regions can be
compensated by the shrinkage on other locations causing little
or no change in total volume. Additionally, volumetric analyses
do not give information about the precise locations of morpho-
logical changes that characterize the appearance and progres-
sion of several neurodegenerative diseases. A precise analysis
of these changes could provide useful diagnostic information
and help to identify individuals at risk. Shape-based morphom-
etry has emerged as the preferred tool for analyzing the struc-
tural changes in human subcortical structures including the hip-
pocampus [10]–[13].
Several methods for the regional hippocampal shape analysis

have been suggested. Some of these are: medial shape represen-
tation [6], [14], spherical harmonic representation (SPHARM)
[6], [15], a combination of both (i.e., SPHARM-based medial
representation) [16], combination of medial shape surfaces and
local width analysis [17], diffeomorphic maps [18] with vari-
ations [19]–[22], and minimum description length framework
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[23] and entropy-based particle systems [24] for statistical shape
modeling. Studies involving healthy adults, participants with
mild cognitive impairment (MCI) and Alzheimer's disease (AD)
patients have demonstrated the usefulness of shape analysis ap-
proaches to study the evolution of hippocampal shapes across
the human lifespan [25], identify regionally-specific shape ab-
normalities of six subcortical structures and lateral ventricles in
MCI and AD [26] and contribute predicting the conversion from
MCI to AD using 3-D hippocampal morphology [27].
However, despite of the existence of a wide-range of shape

modeling and shape-based morphometry approaches, sev-
eral challenges still remain to be overcome. First of all, the
hippocampus shape can be affected by the presence of holes
(mainly caused by high cortisol levels in response to stress,
perivascular spaces or small infarcts [28]), and elongated shape
and sharp and pointy edges (e.g., hippocampal tail). Secondly,
the small size of this structure even in normal young adult
individuals leads to rough boundaries on the binary masks with
increasing effect of the voxel size; and thirdly, image artifacts,
presence of noise, slice thickness and inter-slice gaps increase
the roughness in the borders of the segmented hippocampi
producing also rough surfaces. Some approaches [24], [29]
have tried to address these challenges using a fill-hole operation
combined with smoothing operations, such as Gaussian blurring
and level-set based contour estimation, as preprocessing steps.
However, these can produce false hippocampal boundaries
depending on the severity of the zigzag effect on the previously
delineated boundaries, and this may yield negative effects on
the shape-based morphometry. Studies using the diffeomorphic
registration [20], [22] showed that the template image regis-
tration using large deformation diffeomorphic metric mapping
(LDDMM) could trace more accurate and smooth boundaries of
the hippocampus against noise and wrong segmentations from
automatic methods while establishing the point correspondence
between the template and targets via a template mesh injection.
Previous studies of aging have used hippocampal-shape anal-

ysis on participants within a wide age range (e.g., 55–90 years
old [26] and 18–94 years old [25]), for which morphological
hippocampal differences due to age are expected, and with a
wide spectrum of cognitive abilities (i.e., from normal healthy
to AD patients). To the best of our knowledge, shape analysis
methods of subcortical brain structures have only been applied
to study differences between diseased and healthy sample pop-
ulations. Therefore, the sensitivity of these methods to detect
early morphological changes in normal older people, and hence
their applicability to early diagnosis of neurodegenerative dis-
eases, requires examination. Detecting subtle morphological de-
formations in the hippocampus of nondiseased subjects rely on
the robustness of the individual shape modeling method against
noise and rough boundaries.

A. Overview and Contributions
The aim of this paper is to propose a template-based approach

for the hippocampal shape modeling that is robust against
noise and rough segmentations and sensible to subtle mor-
phological variations. Our shape modeling method performs a
mesh-to-image registration, fitting a template surface of fixed
point sets and vertex connectivity into the image boundaries

while minimizing the geometric distortions of the template
model. It is based on a novel Laplacian surface deformation
principle, which has a multi-level neighborhood for vertex
connectivity and a flexible weighting scheme of the rigidity
parameter. These guarantee: 1) anatomical point correspon-
dence between the individual subjects' surface models, and 2)
robust reconstruction of individual shape details against large
variations of shape and size, noise, and rough boundaries. We
describe the details of the proposed method in Section II.
In Sections III–V, we also present various experiments to

demonstrate the proposed method's 1) accuracy and robustness
in the smooth surface reconstruction with minimal distortion
while filtering out high-frequency noises (Section III), 2) sen-
sitivity and consistency in detecting the significant shape dif-
ferences between healthy control and disease groups (i.e., mild
cognitive impairment and Alzheimer's disease) (Section IV), 3)
robustness in constructing the anatomical correspondence be-
tween individual shape models, and 4) applicability in identi-
fying the subtle shape changes of the hippocampi in relation
to cognitive abilities across healthy subjects (Section V). For
the experiments, we used three datasets of hippocampi: 1) syn-
thetic images with artificial shape deformation and noises, 2)
automatically segmented using the T1-weightedMR images ob-
tained from the Alzheimer's Disease Neuroimaging Initiative
(ADNI) database, and 3) semi-automatically segmented using
the T1-weighted MR images of the Lothian Birth Cohort 1936
(LBC1936) Study. In the experiments, we compare the perfor-
mance of the proposed method with three well-known shape
modeling methods: spherical harmonics followed by a point
distribution model (SPHARM-PDM) [29], ShapeWorks [24],
[30], and LDDMM volume registration [31], [32] with tem-
plate injection [20], [22] (LDDMM-TI) using various metrics
of shape similarity, surface roughness, volume, and shape de-
formity to quantitatively investigate howwell the methods work
in denoising the rough boundaries and tracing the target shape
characteristics.

II. SHAPE MODELING METHOD

Our shape modeling method generates hippocampal surface
models for each individual subject by deforming a template
model that encodes the generic shape characteristics of the
hippocampus as a triangular mesh. This model deforms in the
binary images directly while keeping its anatomical regular-
ities, point distribution and surface smoothness, against the
rough boundaries of the binary segmentations. For this purpose,
we employ a Laplacian deformation framework supporting
the preservation of geometric details (e.g., local curvature
and relative point distance) in free-form mesh deformation
[33]–[35]. The Laplacian-based deformation is widely used for
various graphics applications, owing to its fast computation
and robustness in finding a unique global minimum for the
quadratic energy function [36]. However, the linear system of
the Laplacian-based deformation does not guarantee the optimal
minimization of the geometric distortions against “stretching”
operations deforming a surface mesh into varied shapes of arbi-
trary size [36]. To overcome this limitation, various approaches
have been proposed in interactive surface editing [37] and
mesh parameterization [38]. In this paper, we newly introduce
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a simple and efficient approach, called “progressive model
deformation,” to address the limitation during the process of
mesh-to-volume registration for hippocampal shape modeling.
The progressive model deformation adjusts the scale of the
surface mesh deformation flexibly in accordance with the size
and shape variations between the template model and target
volumes to minimize the geometric distortions of the template
model while mapping its vertices onto image boundaries. In the
following sections, we describe our shape modeling method in
details.

A. Template Model Representation With Multi-Level
Neighborhood and Laplacian Coordinates

The template model is used as shape priors in the individual
shape modeling process. The template model can be constructed
out of image atlases generated from a representative sample of
a population. In this study, we subsequently use marching cubes
algorithm [39], mesh smoothing and mesh resampling methods
for the template model construction from a given image atlas.
Note that our nonrigid shape modeling method is not restricted
to a specific image atlas. It is possible to use other hippocampal
atlases in public domain. A requisite of our shape modeling
method is to construct the template model as manifold without
boundary.
Additionally and importantly, the connectivity of multiple

neighborhoods between points (vertices) is newly defined in the
template model to accommodate them with a progressive sur-
face deformation, which preserves the shape features (i.e., rela-
tive triangle size and local curvature) of the template model as
rigid as possible to build a dense correspondence between tem-
plate model and target volume. The multi-level ( -ring) neigh-
borhood of each vertex in the template model is determined as
follows [40]:
• 1-ring neighbor vertices of a vertex ( ) are the vertices of
the faces incident on .

• -ring neighbor vertices of are the union of its ( -1)
neighbor vertices and their 1-ring neighbors.

Within the -ring neighborhood, each vertex is connected di-
rectly to its neighbors, and this connectivity composes a volu-
metric graph for each vertex with the vertices of -ring neigh-
bors. This extension of the vertex connectivity in the template
model provides an explicit control on the range of the feature
preservation.
Under the definition of the multi-level neighborhood, we en-

code the local geometry of the template surface using a discrete
Laplacian coordinates ( ), which is defined as

(1)

where is the set of vertex indexes of -ring neighbor-
hood and is the discrete Laplacian operator. The weight
( ) between and its neighbor ( ) follows the weighting
scheme of the mean value coordinates [41]

(2)

Fig. 1. Graphical description of the vertex connectivity of the multi-level
neighborhood. Angles ( and ) for the weight ( ) for an edge between

and are depicted. (a) 1-ring neighbor and (b) 2-ring neighbor. Dotted
lines (blue) indicate the direct connection between a vertex ( ) and its -ring
neighbors. -ring neighborhood includes all connectivity of ring
neighborhood.

The angles ( and ), depicted in Fig. 1, are computed
from the template models for the different levels of -ring
neighborhood. The mean-value weight function satis-
fies the following properties [41]–[44]: 1) affine invariance:

, 2) smoothness on the surface, 3) positive-
ness, and 4) linear precision: whenever and are
coplanar. This mean-value weight function is well defined and
smooth for arbitrary shapes, and it helps to smoothly distribute
the external forces, which guide the template model to the
image boundary at each vertex, across neighbor vertices in our
deformation framework.

B. Progressive Model Deformation Framework for Modeling
Individuals’ Surfaces
Once the template models are constructed, they are used for

all individual shape recovery with the pairwise shape correspon-
dence between template and targets. Given a hippocampus bi-
nary mask, we first align the template model using an optimal
rigid transformation minimizing the geometric differences be-
tween the template model and the target hippocampus. This
transformation is computed by an iterative closest point algo-
rithm [45] between the template model and the voxel mesh ex-
tracted from the binary mask.
The individual shape reconstruction with the dense corre-

spondence between the template and targets is achieved by a
Laplacian deformation framework, which finds optimal vertex
coordinates minimizing following energy function:

(3)

In (3), is the set of the optimal vertex coordinates ( ), and
is the Laplacian coordinates of each vertex ( ), which is ob-

tained using the discrete Laplacian operator described in the pre-
vious section. is a parameter to control the model rigidity by
preserving the Laplacian coordinates ( ) during the deforma-
tion. is the desired position where will be placed after each
iteration. is defined as

(4)
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where is the closest image boundary on the direction normal
to the vertex, and is a weighting term for the stability of model
deformation. Simply, the first term of (3) is the function of the
changes of the Laplacian coordinates, representing the local ge-
ometry of the template model at with respect to its neighbor.
The second term of (3) is the function quantifying the discrep-
ancy between the template vertices and the target surface. The
optimal positions of the vertices for (3) can be obtained by iter-
atively solving a linear system in a linear least squares approach
[33], [35].
To obtain the point set on the target surface, which satisfies

the required smoothness and the pairwise vertex corre-
spondence with the template model, the progressive model
deformation derive a large-to-small scale surface deformation
in the modeling process using the multi-level neighborhood
previously explained and a flexible weighting scheme for the
model rigidity parameter ( ). Following the analogy used
by [46], the Laplacian-based deformation framework can be
viewed as a mass-spring system of which nodes (vertices) are
connected by springs of various strengths. In this system, the
external force [i.e., in (3)] guiding to the image
boundary is propagated along the connected vertices after
transforming to the optimal position; thus minimizing the
changes of the Laplacian coordinates against the external force.
The spring strength is determined by the weighting function
( ) for each edge and the rigidity parameter ( ). is an
intrinsic parameter which depend on the geometric shape and
the vertex connectivity of the template model, and is an
extrinsic parameter that determines the model rigidity flexibly
in proportion to the geometric differences between template
and individual targets during the nonrigid deformation.
First, the multi-level neighborhood derives the large-to-small

scale deformation for the individual shape modeling as follows.
In the higher-level neighborhood (see Section II-A), each
vertex is connected to its neighbors of a larger domain as a
volumetric graph and the external force is propagated smoothly
and largely across the surface (Fig. 2). This behavior derives
a large-scale deformation in which the vertex displacement
influences a larger number of vertices to be displaced in the
direction of the external force to preserve the local geometric
shape of the template model. The large scale deformation can
preserve the relative areas of each vertex and its neighbors
thanks to the weighting function ( ). However, it cannot re-
produce the small shape details of the target surface [Fig. 3(d)].
Our strategy on this matter is to reduce the level of the neigh-
borhood, when the template model is not deformed anymore
with a higher-level of neighborhood. We determine this status
of the model deformation using a threshold ( in Algorithm 1)
for average vertex displacements. This approach yields to the
vertex-wise deformation of the template model in smaller re-
gions (small-scale deformation) and decreases the discrepancy
between the vertices and the target surface. Consequently, this
large-to-small scale deformation of the template model places
each vertex close to the image boundary while preserving the
relative positions between the vertices as strong as possible
against the anisotropic size and regional shape variations
between template and target surface [Fig. 3(e)].

Fig. 2. Vertex displacement with different levels of the neighborhood and
model rigidity parameters. Max.: maximum displacement of vertices (mm).

Fig. 3. Example of the progressive model deformation. (a) a synthetic binary
mask, (b) initial state of a template model (sphere) with target surface, (c) de-
formed model with and 1-ring, (d) deformed model with and
3-ring, and (e) deformed model with and 1-ring after deformation with

and 3-to-1 ring. Texture colors indicate the corresponding vertices be-
tween surface models.

In addition, the rigidity parameter for each vertex in
(3) determines the degree of the preservation of the Laplacian
coordinates . The external force is propagated linearly to the
neighbors with respect to . As a larger value is assigned to
, the local geometry ( ) is preserved more rigidly and larger

amounts of the external force are propagated to its neighbors
(Fig. 2). Using this characteristic of the Laplacian deformation
framework, we synchronize with the magnitude of the ex-
ternal force to preserve the point distribution of the template
model against arbitrary shape and size variations. is deter-
mined using the following equation:

(5)

where is a constant weight to control overall rigidity during
themodel deformation. As themagnitude of the external force at
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is larger, more neighbor vertices are moved in the direction of
the external force to preserve the local geometry of the template
model. And, as is closer to the target boundary, gets smaller
and is moved along the displacement of other vertices, which
are not fitted into the boundary enough. For , we implement a
two-step model deformation to control the degree of the shape
detail representation explicitly. Simply, we perform the model
deformation with an initial ( ) and the multi-level neigh-
borhood. Then, if necessary, we do an additional deformation
with of a smaller value ( ) and the vertex connectivity
of the 1-ring neighborhood to restore more shape details of the
target structures. The shape modeling process based on our pro-
gressive model deformation is summarized in Algorithm 1.

C. Rotation-and Scale Invariant (RSI) Transformation

The rough surfaces of hippocampus yield large variations in
the magnitude of the external force denoted by in (3)
[Fig. 4(a)]. The variation of the external forces at each vertex is
proportional to the quality of the fit between the template and the
target. Moreover, large voxel sizes (i.e., low spatial resolution)
encompass an increase in the variation of the external factors'
magnitude. Fig. 4(a) shows the external forces at each vertex
on a section of the template surface of a hippocampal model.
The modeling result obtained from applying the two previously
explained deformation techniques displays large variations in
the local curvature on the hippocampal surface [Fig. 4(b)]. This
is a common problem observed in nonrigid surface deformation
methods that use vertex normal boundary search.

Fig. 4. Variation of external factors (left) and hippocampal surface models
reconstructed without/with rotation-and-scale invariant transformation (right).
The surface models are color-mapped as shown in the scale, with Gaussian
curvature (red: , green: 0.0, blue: ). (a) External Image Factors.
(b) Without RSI Transformation. (c) With RSI Transformation.

To overcome this problem, we apply a rotation-and-scale in-
variant (RSI) transformation to preserve the surface quality of
the template model while recovering the small shape details.
The RSI transformation, proposed by [34], constrains the vertex
transformations only to rotation, isotropic scale and translation.
This helps regularizing the individual vertex transformation, de-
rived by external factors, to the transformations of the neighbor
vertices using them as reference. The RSI transformation of
each vertex is determined by finding the optimal parameters that
minimize the differences between the current positions of each
vertex (and that of its neighbors) to the newly computed posi-
tion for each of them via (3) as (6) shows

(6)
This quadratic function is solved for each vertex by a linear
least squares approach in a similar way to (3). The formula that
describes this process can be found in [34]. For hippocampal
shape modeling, the application of the RSI transformation suc-
cessfully maintained the surface smoothness while restoring the
local shape characteristics of the targets (i.e., binary masks) in
the iterative process [Fig. 4(c)].

III. ROBUSTNESS EVALUATION AGAINST NOISE AND
REGIONAL SHAPE DEFORMATIONS ON SYNTHETIC DATA

We evaluated our hippocampal modeling method via the fol-
lowing experiments: A) performance under conditions of noise
and extreme deformations on synthetic data, B) sensitivity
in detecting the regional shape differences between control
and disease groups using data obtained from the Alzheimer's
Disease Neuroimaging Initiative (ADNI) database, and C)
accuracy, applicability and usefulness using data from a study
of aging. In the first two experiments, we compared our method
with other three modeling methods; SPHARM-PDM (Ver.
1.11, www.nitrc.org/projects/spharm-pdm) [29], ShapeWorks
(Ver. 1.1, www.sci.utah.edu/software/shapeworks.html) [24],
[30] and LDDMM-TI [22], [31], [32]. For LDDMM volume
registration, we used an open source software, uTIlzReg
(sourceforge.net/projects/utilzreg). We also evaluated the
consistency of findings via statistical analyses comparing our
results with those obtained by previous neuroimaging studies
about Alzheimer's disease.
The four shape modeling methods evaluated can be grouped

differently with respect to data representation, denoising
methods and shape correspondence approaches. According
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TABLE I
GENERAL PARAMETERS FOR EACH MODELING METHOD

to the classification of shape registration methods in [47],
our framework performs mesh-to-volume correspondence,
SPHARM-PDM and ShapeWorks perform a mesh-to-mesh cor-
respondence, and LDDMM-TI performs a volume-to-volume
correspondence. With regards to noise represented by rough
boundaries and holes, SPHARM-PDM and ShapeWorks sup-
port fill-hole and smoothing operations (anti-aliasing and
Gaussian smoothing) on binary masks [24], [29]. These op-
erations help to remove the high-frequency image artifacts
and generate smooth surfaces of the target structure. The
smoothness or denoising effects are determined by the spread
parameter (i.e., standard deviation for Gaussian smoothing).
SPHARM-PDM also supports a parameter to control the
maximal degree for the SPHARM computation, which de-
termines the level of the shape detail representation [29]. On
the contrary, the LDDMM-TI and our method preserve the
shape characteristics of a smooth template model, which is
represented as an image volume or a surface mesh. In the
LDDMM volume registration, the Gaussian kernel is used to
describe the velocity fields and generate smooth diffeomor-
phism in most approaches [32], [48]. The standard deviation
of the Gaussian kernel determines the smoothness of the re-
constructed surfaces. In our approach, determines the
level of shape detail restoration. From the point of view of
shape correspondence, SPHARM-PDM, LDDMM-TI, and our
method provide pairwise point correspondence between the
individual surface and a template surface. ShapeWorks find an
optimal solution of group-wise point correspondence using an
entropy-based particle system. Table I shows the values of the
parameters used for each method unless stated otherwise. We
validated the shape correspondence of each method by testing
their sensitivity in detecting regional shape differences between
hippocampal surfaces.

A. Experiment Design

The goal of this experiment is to evaluate the robustness
of the four modeling methods previously mentioned in de-
tecting the regional shape differences against image artifacts,
such as sharp edges and holes. For this, we first built a set of
synthetic hippocampal surfaces including smooth and locally
deformed shapes of hippocampus with different sizes. We
transformed a smooth surface mesh of the left hippocampus
using anisotropic scale transformation with anisotropic scale

Fig. 5. Synthetic surfaces and noisy binary masks. (a) Synthetic surface with
anisotropic scale. (b) Synthetic surface by adding regional deformation to (a).
(c) Voxelized surfaces with salt-and-pepper noise addition. (d) Isosurface mesh
generated from the noisy binary mask.

factors ( ). Then, we added local shape
deformations to the synthetic surfaces by translating the ver-
tices using surface height maps, which include the known
magnitudes of vertex displacement for each vertex along the
vertex normals. In the height maps, we set the maximum
displacement of vertices as 3 mm. Through this process, we
obtained synthetic surfaces of hippocampi with and without
local shape deformations with known magnitude. The synthetic
surfaces were converted into binary masks of 1.0 1.0 1.0
mm voxel size as inputs of the surface modeling methods.
We simulated image artifacts of noisy surface boundaries in

the generated binary masks through the following steps: 1) salt-
and-pepper type image noise was added to the binary images
(probability ) and 2) the floating particles, not connected
to the synthetic surfaces, were removed. This voxel-wise oper-
ation for noise generation produced small local perturbations,
such as holes and very sharp outliers, as well as rough surfaces
in the binary images of the hippocampi. Fig. 5 shows the syn-
thetic data generated via this process. With the “noisy” binary
masks, we tested the quality of the denoising approach and the
target shape reconstruction of each shape modeling method. For
this, we measured surface roughness, shape similarity and sur-
face volume on the modeling results, obtained after performing
the shapemodeling with sequential values of the parameters that
determine the smoothness or the level of shape detail, for each
method. We also computed the local shape deformity between
the reconstructed shape models; and visually compared the de-
formity values with the magnitudes of the vertex displacement
in the height maps.

B. Metrics of Surface Roughness and Shape Similarity

To quantify the quality of the reconstructed surface models
and trace the denoising patterns of each method, we employed
well-known metrics. First, we converted the reconstructed
models into binary masks with the same voxel size (1.0 1.0
1.0 mm ) to compare the surface quality of the shape recon-

struction process, including regional deformations and handling
of image artifacts, with the target binary masks, which, in
practice, were obtained from the segmentation process.
The surface roughness was assessed by a roughness metric

using mean curvature [49]. The surface roughness was deter-
mined using the difference between the mean curvature
at each vertex ( ) and the average mean curvature of its -ring
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Fig. 6. Maps of the difference . (a) and (b) Synthetic surfaces without
and with image artifacts. The roughness of (a) is 0.244 and (b) is 1.015.
(c) Surface of the minimum roughness (0.506) in a dataset from ADNI database
(see Section IV-A). (d) Surface of the maximum roughness (1.115) in the
same dataset. Wireframed meshes around the surfaces of colormaps are the
isosurface meshes generated from the binary masks.

neighborhood. The equation of the surface roughness of a sur-
face ( ) is given by

(7)

We computed the surface roughness of the target structure from
a smooth isosurface generated by marching cubes and mesh
smoothing algorithms from any input binary masks. The av-
erage mean curvature for , computed from all vertices
except , is named as global roughness. It describes the av-
erage behavior of all vertices in . Note that the isosurfaces
were scaled with respect to the volume of the template model,
used for experiments, to compare the roughness between the
surfaces of different size. Fig. 6 presents the maps of on
the surfaces from the synthetic and ADNI (clinical) dataset. In
the former, the artificial image artifacts, which were simulated
by salt-and-pepper type noise [Fig. 6(b)], showed similar pat-
terns to the rough boundaries of the binary masks obtained from
segmented the hippocampi [Fig. 6(c) and (d)].
The shape similarity between the reconstructed models and

the target binary masks was measured using three metrics: a vol-
umetric similarity index [i.e., Dice coefficient (DC)], the sym-
metric mean distance (MD), and the symmetric Hausdorff dis-
tance (HD). Briefly, the DC measures the volume overlap be-
tween two volumetric data A and B [50] by

(8)

In (8) the operator returns the size of the input data and
the operator returns the spatially common (i.e., intersection)
volume between A and B. The DC ranges between 0 and 1 rep-
resenting disjoint and complete overlap, respectively. The MD
measures the average distance between two surfaces, and the
HD measures the maximum distance between them. We com-
puted the MD and HD between the binary masks using Insight
Toolkit (ITK, Ver. 4.5.2, www.itk.org).

C. Experiment Results
Fig. 7 shows the denoising effects of each method by com-

paring the binary synthetic hippocampi (S) against the binary

“noisy” synthetic hippocampi (S') and/or against the modeled
(M) hippocampi. The latter were obtained from applying our
progressive model deformation method (a), the LDDMM-TI
(b), anti-aliasing and Gaussian smoothing for SPHARM-PDM
and ShapeWorks (c), and SPHARM-PDMwith different degree
of the SPHARM computation (d). Fig. 7(d) was obtained from
the binary masks generated by the anti-aliasing and Gaussian
smoothing operation of 1.0 standard deviation. The horizontal
axis shows the different consecutive values of the smoothing
parameters used for each modeling method.
As can be appreciated in Fig. 7, all methods had excellent

performance against high frequency noises for medium-to-high
values of the smoothing parameters (first column in Fig. 7).
However, the patterns of volume and shape changes in the
denoising process were very different between the methods.
The anti-aliasing and Gaussian smoothing operation for
SPHARM-PDM and ShapeWorks showed the best results in
denoising at 1.0 standard deviation (higher DC, lower MD and
HD, and similar volume to synthetic hippocampi). This result
was attributed to the voxel size (1.0 1.0 1.0 mm ) of the
synthetic masks. As the size of Gaussian filter increased (i.e.,
larger than 1.0 mm), the shape similarity was getting worse,
due to the volume shrinkage with respect to the Gaussian
smoothing operation. For SPHARM-PDM, the degree of the
SPHARM computation did not affect the shape similarity and
volume of the reconstructed models significantly [Fig. 7(d)].
On the contrary to the Gaussian smoothing operation, the
template-based methods (progressive model deformation and
LDDMM-TI) generated the converged results in all metrics
for medium-to-high values of the smoothing parameters. The
lower values of the smoothing parameters for each method
generated more rough surfaces. This result indicates that the
template-based approaches fitted the template into target sur-
face globally and then filtered out or included the local details
of the binary masks. This behavior of the template-based
denoising helps to trace the surface of target structure without
shrinking the volume, and makes all the modeling process more
robust against large variations produced by noise in binary
masks from clinical datasets. In addition, our method produced
better results than the LDDMM-TI in volume preservation for
consecutive values of the smoothing parameters.
Fig. 8 presents the shape deformity measured from the shape

models of each method. Since ShapeWorks provides a set of
points without connectivity information as an output, we visu-
alized the shape deformity on the spherical particles. By placing
the vertices on the target boundary with filtering out the high
frequency noise, each method detected the artificial shape de-
formation added in the binary masks. Our progressive model
deformation and the LDDMM-TI showed better performance in
localizing the regional shape deformation than SPHARM-PDM
and ShapeWorks. SPHARM-PDM and ShapeWorks did not de-
tect correctly the deformation at the lateral anterior part of hip-
pocampus, where the cornu ammonis 1 (CA1) meets with the
fimbria. The detected regions of SPHARM-PDMwere distorted
(stretched). This result may be originated from the artificial os-
cillations in the surface models by using spherical harmonics
(12 degree in our experiment), reported in [51]. In the results
from ShapeWorks, we also observed the intersections between
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Fig. 7. Denoising effects of eachmethod (a) progressive model deformation with the , (b) LDDMMvolume registration with template injection (LDDMM-TI)
with the standard deviation of the Gaussian kernel, (c) anti-aliasing and Gaussian smoothing with the standard deviation for SPHARM-PDM and ShapeWorks, and
(d) SPHARM-PDM with the maximal degree for the SPHARM computation from the binary mask, with anti-aliasing and Gaussian smoothing of 1 mm standard
deviation. Horizontal axis of all plots displays the corresponding smoothing parameters for each method, where its increase smooths the shape. Vertical axis is
for the measured value—roughness (first column), shape similarity (second to fourth columns), and volume (last column)—from the experiment. Top and bottom
dotted lines in the plots of the first and last columns indicate the reference values measured from the binary mask with and without noise, respectively. Dotted lines
in the plots of the middle three columns indicate the shape similarity between the binary masks with and without noise. M: the reconstructed models, S: binary
mask without noise (gold standard), and S': binary mask with noise.

the difference vectors of the corresponding points, on different
binary masks. The intersections indicate the wrong point corre-
spondence. They also caused wrong values of the shape defor-
mity [e.g., green particles among red particles at hippocampal
head (last column in Fig. 8)]. This limitation of ShapeWorks
have been reported in [52].

IV. SHAPE MODELING AND ANALYSIS ON A DATASET OF THE
ALZHEIMER’S DISEASE NEUROIMAGING INITIATIVE

In this section, we present experiments using the surface
models, generated by the four shape modeling methods, to
evaluate their performance in denoising the rough boundaries
and detecting the regional shape differences with respect to
clinical factors.

A. Materials and Image Processing
Data used in the preparation of this article were obtained from

the Alzheimer's Disease Neuroimaging Initiative (ADNI) data-
base (adni.loni.usc.edu). It hosts clinical, demographic, cogni-
tive and MRI data from subjects recruited from over 50 sites
across the U.S. and Canada. To date it comprises data from
over 1500 adults, ages 55–90, who are either cognitively normal

older individuals, individuals with early or late MCI, or individ-
uals with early AD. For up-to-date information, see www.adni-
info.org.
The database of ADNI gathers cross-sectional and longitu-

dinal data including 1.5T structural MR images from 800 sub-
jects and 3.0T structural MR images from 200 subjects. The
MRI protocol of ADNI is described in [53]. For our study, we
collected a subset of MR images of 150 subjects, of which 50
were AD patients, 50 were individuals with MCI, and 50 were
healthy controls. For reproducibility purposes, the study par-
ticipant's' identifiers used are provided in the Supplementary
material. From each subject, we used the T1-weighted struc-
tural MR images, acquired at 1.5T, from the screening visit.
ADNI performed some postprocessing steps to correct certain
image artifacts and to enhance standardization across manufac-
turers. The postprocessing steps include 3-D gradwarp correc-
tion [54], [55], B1 nonuniformity correction [56] and N3 image
intensity nonuniformity correction [53]. We use these postpro-
cessed images in this study. The demographic characteristics
of the collected subjects are given in Table II. We collected
the subjects' information such as MMSE score and intracranial
volume from ADNI database. Left and right hippocampi were
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Fig. 8. Comparison of the modeling methods in detecting the regional shape
deformation. (a) Shape deformity between the shape models reconstructed from
the binary masks without image noise. (b) Shape models reconstructed from
“noisy” mask, and (c) shape deformity between the shape models reconstructed
from the noisy masks.

TABLE II
DEMOGRAPHIC CHARACTERISTICS OF THE ADNI SUBJECTS

INCLUDED IN THIS STUDY

segmented using FIRST software [13] from FMRIB Software
Library (FSL, ver. 5.0, fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Visual
inspection was performed on the hippocampal binary masks to
ensure the quality of the automatic segmentation.
Fig. 9 presents the volume and surface roughness of the left

and right hippocampi segmented from the collectedMR images.
We also performed a two-tailed Wilcoxon rank sum test to ex-
amine the statistical differences in volume and surface rough-
ness between groups and univariate linear regression to eval-
uate the relationship between the volume and surface roughness
across subjects. In this latter test, the hippocampal volume was
scaled by ICV. For both left and right hippocampus, the hip-
pocampal volume and surface roughness of control group were
significantly different from those in the MCI and AD groups
( , Table III). For left hippocampus, the distributions
of the volume and roughness were not different between MCI
and AD groups. For right hippocampus, the volume was sig-
nificantly different between MCI and AD groups ( ),
but the surface roughness was not. The surface roughness for all

cases ranged from 0.5 to 1.2, and these values were similar to
the roughness of the synthetic data including the high-frequency
noises (Fig. 6). The linear regression analysis on the volume and
surface roughness showed that the surface roughness was de-
creased as the volume was increased for both hippocampi (left:

, , right: , ).

B. Experiment Design
To obtain the individual shape models from the collected

dataset, we first built average shape atlases of left and right
hippocampi from the segmentations following the process de-
scribed in [57] and [58]. Then, we constructed surface meshes
from the average atlases, which were used as template models
of the left and right hippocampi for all subjects, in the same way
as it is described in Section II-A. The modeling (smoothness)
parameters were determined as the values that produced the
best shape similarity and similar roughness of the resulting sur-
faces in the experiment on the synthetic data. For our method,
the template models were directly fitted into the individual
binary masks. was 9 and was 20. For LDDMM-TI,
the deformation fields satisfying the diffeomorphic properties
were obtained between the average shape atlases and the indi-
vidual binary masks first. Then, the template surface models
were deformed following the deformation fields, generated
via LDDMM volume registration, as the template injection.
The standard deviation of the Gaussian kernel for LDDMM
volume registration was 4.0 mm. For SPHARM-PDM, we
first performed the anti-aliasing and Gaussian blurring with
standard deviation 1 mm. The maximal degree of the SPHARM
computation was 12. To evaluate the accuracy and denoising
effect, we measured the shape similarity, surface roughness
and volume from the individual models using the metrics,
introduced in Section III-B and we compared the measured
values between the shape modeling methods using a Wilcoxon
signed-rank test. We also tested the significant differences in
the measured values between clinical groups using a two-tailed
Wilcoxon rank sum test. For this test, the volumes of the
individual models were scaled by the individuals' ICV.
For the statistical analysis on the regional shape deformation,

the individual shape models were normalized separately by
each shape modeling method via isotropic rescaling of the
shape models using intracranial volume and the generalized
Procrustes analysis (GPA) [59] to investigate shape differences
between the individualized shape models corrected by individ-
uals' head size. Average models for left and right hippocampi
were generated after the normalization. Local shape differences
of the individual models were determined by the displacement
vectors between the corresponding vertices of the individual
surface models and the mean surface model. The shape de-
formity at each vertex was computed as the signed Euclidean
norm of the displacement vectors, projected on the vertex
normal on the mean surface model to determine the direction
of local shape changes. This type of analysis has been applied
previously [7], [12].
With the shape deformity maps obtained from the three

methods (i.e., LDDMM-TI, our deformation framework and
SPHARM-PDM), we carried out the following statistical
analyses: 1) representation of the average displacements per
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Fig. 9. Volume and roughness of the hippocampal binary masks from a dataset of ADNI. First row gives the box plots of the volume (left), surface roughness
(middle) and the fitted line plot between them (right), which were obtained from the individuals' left hippocampus. Second row gives them of the right hippocampus.
AD: Alzheimer's disease, MCI: mild cognitive impairment and Controls: healthy controls.

TABLE III
SIGNIFICANT DIFFERENCES IN THE HIPPOCAMPAL VOLUME AND
SURFACE ROUGHNESS BETWEEN GROUPS VIA A TWO-TAILED

WILCOXON RANK SUM TEST

group: controls, AD and MCI, to visually compare the average
shape deformity of each group with respect to the average
model, 2) group-wise comparison using the Wilcoxon rank sum
test to determine regions of significant morphological shape
differences between groups, and 3) robust univariate linear re-
gression to evaluate the association between local hippocampal
shape deformations and cognition [this last represented by the
scores of the Mini Mental State Examination (MMSE)] and to
determine the strength and significance of these associations
using age and gender as covariates. To allow comparability with
previously published analyses, we analyzed all subsamples
separately and did not combine the results of different methods
to conclude about significance on the deformation at any point.
Therefore, we did not correct for multiple comparisons. We
also reproduced the analysis of covariance (ANCOVA) done
in [12] with age and gender as covariates to test the hypothesis

that the shape deformity can discriminate the AD and MCI
subjects from healthy controls. As this analysis included cor-
recting for multiple local deformity comparisons, we applied
false-discovery-rate adjustment to the -values produced by
ANCOVA reducing the number of false positives.

C. Experiment Results

1) Shape Similarity, Surface Roughness and Volumes:
Fig. 10 presents the volume, surface roughness and shape simi-
larity (DC, MD, and HD) of the smooth models, reconstructed
by the shape modeling methods. We present the plots of the
observed values from the binary masks of right hippocampus
only to illustrate the differences between the modeling methods
with multiple plots. For the left hippocampus, we obtained
similar results to the right hippocampus. For all modeling
methods, the volumes and surface roughness of the shape
models were significantly different between groups ( ,
Table IV). An interesting observation is that the shape models'
surface roughness was discriminable between MCI and AD
groups ( ). Compared to the roughness of the input
binary masks (min.: 0.5, max.: 1.2), the shape models showed
the smallest values of surface roughness (min.: 0.1, max.:
0.3). These results indicate that 1) the three shape modeling
methods filtered out the high frequency noise in the input binary
masks properly and 2) the regional shape variations across
hippocampal surface of the shape models were significantly
different between the clinical groups.
SPHARM-PDM generated the shape models of largest

volume (min.: , max.: 483 mm ) from the input masks and
LDDMM-TI generated the shape models of smaller volume
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Fig. 10. Volume, surface roughness and shape similarity of the individual shape models of right hippocampus, reconstructed by our progressive model defor-
mation, LDDMM registration + template injection, and SPHARM-PDM. (a) Shape models' volume. (b) Volume difference between the shape models and input
masks, (c) models' surface roughness. (d)–(f) Dice coefficient, mean distance and Hausdorff distance between the shape models and input masks. AD: Alzheimer's
disease. MCI: mild cognitive impairment and Controls: healthy controls.

TABLE IV
SIGNIFICANT DIFFERENCES IN THE VOLUME AND SURFACE

ROUGHNESS OF THE SHAPE MODELS OF THE RIGHT HIPPOCAMPUS,
GENERATED BY THE MODELING METHODS, BETWEEN GROUPS VIA

A TWO-TAILED WILCOXON RANK SUM TEST

(min.: , max.: mm ). On the contrary, our progres-
sive model deformation produced similar volume to the input
binary masks in a small range of volumetric difference (min.:

, max.: 175 mm ) [Fig. 10(b)] against the large variations
in the volume and image quality across the input binary masks.
Our progressive model deformation also showed better shape
similarity (higher DC and lower MD and HD) between the

TABLE V
COMPARISON OF THE SHAPE SIMILARITY OF THE SHAPE MODELS TO THE

INPUT BINARY MASKS BETWEEN THE MODELING METHODS

shape models and input binary masks than other methods
(Table V).
Fig. 11 presents shape models of large volume differences

with the voxel meshes of the input binary masks to explain the
limitations of the modeling methods. The Gaussian smoothing
operation for SPHARM-PDM was not good to preserve the
hippocampal shape details while removing the high frequency
noises. It just smoothed out the local shape features and gener-
ated a blunt shape of hippocampus (regions where red arrows
point in Fig. 11). This tendency was also confirmed via a linear
regression between the surface roughness and the volume
difference. From the regression analysis, we found that the
volume difference is in direct ratio to the surface roughness
( , ). The volume differences between
LDDMM-TI models and input masks were originated from
insufficient template propagation to the image boundary (fourth
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Fig. 11. Example of hippocampal shape models of large volume differences to the input masks. Diff.: model volume–volume of input masks (mm ).

and fifth columns in Fig. 11). Because the LDDMM volume
registration regulates the smoothness of the velocity field using
the size of Gaussian kernel, it was expected that smaller values
for the standard deviation of the Gaussian kernel can produce
better shape similarity. The lower values for Gaussian kernel
size produced more deformation of the template volume to
unrestored parts of the hippocampus (e.g., hippocampal tail
(purple arrows) in Fig. 11), but at the same time, other regions
of the shape model were getting more rough by propagating
the template model closer to the rough image boundary. This
characteristic of the LDDMM volume registration makes hard
to control the overall smoothness of the shape model. On the
contrary, our progressive model deformation reconstructed the
hippocampal shape features properly while filtering out the
sharp outliers, owing to the large-to-small scale deformation
and vertex-wise boundary search. Fig. 12 showed that our
method restored the major features (e.g., hippocampal head and
tail) of hippocampus in a large-scale deformation using large
values of and that the local details can be reconstructed
via a local vertex deformation across the surface using small
values of . The average computation time of our method
using the template model of 2463 vertices and three-ring as the
maximum level of the neighborhood on a PC with Intel Core
Quad Core 2.3 GHz and 4 GB memory for all subjects was

min. The computation time of our method is pro-

Fig. 12. Hippocampal shape models with different . For all cases,
was 20.0. (a) (roughness: 0.167), (b) (roughness:
0.190), and (c) (roughness: 0.237). Texture colors indicate the
corresponding vertices between surface models.

portional to the number of vertices and the maximum level of
the neighborhood, due to the linearity of the Laplacian surface
deformation. When we increased the number of vertices in the
template model as 4002, the computation time was increased
about two times. For SPHARM-PDM, the time was
and for LDDMM-TI it was min .
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Fig. 13. Distributional shape deformation average maps of the left hippocampi
for cognitively normal controls, MCI and AD individuals, obtained (from left
to right) from LDDMM volume registration with template injection (LDDMM-
TI), our progressive model deformation and SPHARM-PDM.

2) Average Displacements per Group: Fig. 13 shows the
patterns of the average displacements with respect to mean
shape for the left hippocampi of individuals from the ADNI
database grouped according the Clinical Demential Rating
Scale in normal controls, MCI and AD obtained, from left
to right, by LDDMM-TI, our progressive model deformation
and SPHARM-PDM. The three methods produced almost
identical results. The same pattern was observed for the right
hippocampi.
3) Nonparametric Analysis of Significant Deformations Be-

tween Groups (Wilcoxon’s Rank Sum Test): Significant defor-
mations between the AD and MCI groups were only observed
in the antero lateral region of the CA1 and in the subiculum,
with similar patterns obtained from LDDMM-TI, our progres-
sive model deformation and SPHARM-PDM. The regions with
significant displacement differences between controls and MCI
and controls and AD, were predominant and excluded the an-
tero-ventral and postero-lateral (fimbria) regions for both (i.e.,
right and left) hippocampi. Fig. 14 illustrates the results ob-
tained for the left hippocampi.
4) Robust Univariate Linear Regression: Fig. 15 shows,

for each hippocampi, the distributional map of the nonstan-
dardized beta coefficients (upper rows) and -values (bottom
rows) obtained by the three methods. Although the patterns
of significance obtained by the three methods are similar, our
method produced results slightly more similar to LDDMM-TI

Fig. 14. Results of the Wilcoxon's rank sum test for the left hippocampi, ob-
tained from LDDMM volume registration with template injection (LDDMM-
TI), our progressive model deformation and SPHARM-PDM (from left to right,
respectively).

than to SPHARM-PDM. The distribution map of standard
errors was the same for all methods and ranged uniformly
from 0.15 in the dorsal and ventral regions to 0.5 in the lateral
regions. The -value maps were similar to those obtained from
the Wilcoxon's rank sum test between control and AD groups.
Interestingly, in all cases, positive associations represented by

beta coefficients of nearly 1 (i.e., outwards displacements with
respect to the mean shape and higher MMSE scores or inwards
displacements and lowerMMSE scores) were significant, whilst
the absence of associations (i.e., beta coefficients nearly 0) was
nonsignificant.
5) ANCOVA Followed by False-Discovery Rate Adjustment:

This test produced similar patterns as those obtained from the
Wilcoxon's rank sum test (Figs. 14 and 16) with the exception
of when AD and MCI groups were compared. In this case, no
significance was observed on the deformations between those
two groups for any point with our method and neither with
SPHARM-PDM. LDDMM-TI showed slight significance (

) on a reduced region of the postero-ventral subiculum on
the left hippocampus, but not at all on the right hippocampus.

V. MODEL VALIDATION ON A DATASET OF A
HEALTHY AGING POPULATION

With a clinical dataset from a study of aging, we performed
two experiments: 1) evaluation of the accuracy in representing
the variations of the hippocampal shape and the anatomical
shape correspondence between the individualized models,
and 2) evaluation of the sensitivity of the proposed modeling
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Fig. 15. Maps of the strength and direction [rows above on each panel, rep-
resented by the nonstandardized beta coefficients ( )] and significance (rows
below on each panel, represented by the -value) of the association between
cognition (represented by the MMSE scores), and local hippocampal shape de-
formation patterns, for left (upper panel) and right (lower panel) hippocampi ob-
tained, from left to right, by LDDMM volume registration with template injec-
tion, our progressive model deformation and SPHARM-PDM. Age and gender
were used as covariates.

method in showing differences related to cognitive perfor-
mance in nondiseased older people. In this section, we first
describe the characteristics of the sample, imaging protocol,
data processing and clinical variables of the study of aging.
Then, we present the experiment for the model validation of
accuracy and shape correspondence on the clinical data. In the
next section, we demonstrate the statistical shape analysis of
hippocampal morphology with the cognitive variables.

A. Materials and Image Processing

We used MR images and cognitive data from 51 participants
(33 women and 18 men) randomly selected from The Lothian
Birth Cohort 1936 (LBC1936) Study [60] (www.lothianbirth-
cohort.ed.ac.uk). The data used in our experiments was obtained
at individuals' mean age of 72.7 years (standard deviation

years). All study participants included in our sample had
Mini Mental State Examination scores (i.e., limit con-
sidered to be indicative of possible pathological cognitive
impairment). Written informed consent was obtained from all
participants under protocols approved by the Lothian (REC
07/MRE00/58) and Scottish Multicentre (MREC/01/0/56)
Research Ethics Committees. Study participants were imaged

Fig. 16. Results from the analysis of covariance (ANCOVA) followed by
false discovery rate correction for the left hippocampi, obtained from LDDMM
volume registration with template injection (LDDMM-TI), our progressive
model deformation and SPHARM-PDM (from left to right respectively). Age
and gender were used as covariates.

in a GE Signa HDxt 1.5T clinical scanner (General Electric,
Milwaukee, WI, USA) with a manufacturer supplied 8-channel
phased-array head coil following a scanning protocol described
in detail elsewhere [61]. The T1-weighted MR sequence, used
to generate the hippocampal binary masks, was acquired in
coronal orientation and had inversion, echo and repetition times
of 500/4/9.8 ms, respectively, flip angle of 8 , slice thickness
of 1.2 mm, bandwidth of 122 Hz/pixel and voxel dimension of
1 1 1.3 mm
A first approximation of the left and right hippocampal seg-

mentation was obtained fully automatically in the sameway as it
was done for the ADNI dataset (Section IV-B). The results were
visually assessed by a trained image analyst and manually cor-
rected using Analyze 10.0 software (www.analyzedirect.com)
when required [61]. The resulting segmented areas were saved
as binary masks and the volumes were quantified and expressed
in mm .We also measured the head size of individuals. Intracra-
nial volume (i.e., contents within the inner skull table including
brain tissue, cerebrospinal fluid, veins, and dura), with an infe-
rior limit on the axial slice just superior to the tip of the odontoid
peg at the foramen magnum was extracted semi-automatically
using the T2*-weighted sequence, with the Object Extraction
Tool in Analyze followed by manually editing [62].
All study participants underwent a wide range of cognitive

tests as described in [60]. We used the following cogni-
tive data: general factors of cognitive ability (g), processing
speed (g-speed), and memory (g-memory) at mean age 72.7
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TABLE VI
SHAPE SIMILARITY OF THE SHAPE MODELS, RECONSTRUCTED FROM A

DATASET OF A HEALTHY AGING POPULATION ( )

( ) years. These were generated using principal com-
ponent analysis by members of The LBC1936 Study Group
(see author's list) as described elsewhere [63]. Briefly, to derive
g six subtests of the [64] (Digit Symbol, Digit
Span Backward, Symbol Search, Letter-Number Sequencing,
Block Design & Matrix Reasoning) were used. g-memory was
derived from five subtests from the [65] (Logical
Memory Total Immediate & Delayed Recall, Verbal Paired
Associates Immediate & Delayed Recall & Spatial Span Total
Score) and two subtests from the (Letter-Number
Sequencing & Digit Span Backward). g-speed was obtained
from two reaction time tests (Simple Reaction Time & Choice
Reaction Time), an Inspection Time test and two
subtests (Digit Symbol & Symbol Search). These cognitive
variables (i.e., g, g-memory, and g-speed) were continuous and
normally distributed throughout the sample. Gender and age
in days at the time of the cognitive tests and at the time of the
MRI scan were also used in the statistical analysis. For the
hippocampal binary masks of the selected subjects, we built
the template models for left and right hippocampi following
the process described in Sections II-A and IV-B. Then, we
performed the shape modeling using our progressive model
deformation technique and measured the shape similarity of the
shape models with the input binary masks. Table VI showed the
measured values of the shape similarity. The volume overlap
between the surface models and the target structures in the
segmentations was 95% for left and right hippocampus. The
average MD from all subjects was 0.442 mm, i.e., less than half
the voxel spacing of the segmentations (1.0 1.0 1.3 mm ).
The average HD was 2.458 mm.

B. Evaluation of Anatomical Shape Correspondence

To investigate the shape correspondence between the in-
dividualized surface models, we performed an anatomical
landmark test that included manual landmark assignments and
fiducial localization error (FLE) [66] measurements across
subjects. For this landmark test, we selected seven representa-
tive datasets: three datasets from subjects who had the largest
hippocampal volume, three with the smallest and one with
medial hippocampal volume. A trained analyst manually placed
six representative anatomical landmarks on each of the left
and right hippocampal models of the selected subjects (seven
subjects 12 landmarks). Each time, the landmark placement
was done blind to the placements on previous subjects. To
account for intra-operator variability the analyst performed the
landmark assignment three times, and the average positions
of each landmark were used for this evaluation. We deter-
mined two sources of errors: 1) intra-operator variability and
2) inter-surface variability. The intra-operator variability was

measured by the FLE expression as (9). The six positional coor-
dinates of the corresponding landmarks on each of the surface
models can be expressed as: where is the
average position of th landmark on the surface model of the th
subject. To assess the inter-surface variability, we projected the
landmarks onto the surface models of the selected subjects
(seven subjects) and the mean surface model (this last obtained
from all subjects) separately. Then we measured the FLE with
respect to the projected points of the landmarks . This FLE
value indicated the positional variability of the landmarks on
each surface model, and was formulated as

(9)

where are the positional coordinates ( , , ) of a landmark
on a surface model and is . For the intra-oper-
ator variability, is the number of manual placements ( ),
and are the positional coordinates of the landmark at the
th manual assignment. For the inter-surface variability, is the
number of subjects ( ), and is the projected position of a
landmark ( ) of the th subject in the set . For the inter-sub-
ject variability, the FLE value for on a surface model rep-
resents the localization error of the landmark assignment as the
average distance from the projected points ( ) of the landmarks
in to their centroid ( ) on the surface model and is related
to the operator's observation of the various shapes of the hip-
pocampal surface models. To quantitatively investigate the sim-
ilarity of FLEs between the surface models, we also measured
the difference between the maximum and minimum FLEs of
across the surface models. This difference was considered as the
localization error caused by the hippocampal modeling method.
Consequently, it can be a measure of the robustness of our mod-
eling method in preserving the correspondence of the anatom-
ical landmarks in between subjects. As FLE is based on Eu-
clidean distance, the size of the hippocampal surface models can
lead to bias while investigating the inter-surface variability. To
avoid this bias, we used the surface models that were normal-
ized by the hippocampal volumes.
Fig. 17(a) presents 12 anatomical landmarks on left and right

hippocampal surface models (i.e., six on each hippocampi) of a
subject with large hippocampal volume. In order to access the
intra-operator variability, we measured the FLE of each manual
landmark assignment for 14 hippocampal surface models (left
and right surface models of seven subjects). The average FLE
was mm. The error range of the manual assign-
ment was from 0.076 mm to 1.839 mm. The average FLE for
each landmark are listed in Table VII. For the inter-surface vari-
ability, Fig. 17 shows the projected landmarks (yellow dots) and
their average positions (blue dots) on the surface models. The
positions of the projected landmarks in each set ( ) are close to
each other and to their average positions. This result was con-
sistent across the surface models. The maximum, minimum and
error range of the projected landmarks are listed in Table VIII.
The minimum FLE for the landmark projection on the surface
models was observed at the tip of the right hippocampal tail
(0.733 mm, R#1 in Table VIII). The maximum value was ob-
served at the dorsal joint between the cornu ammonis (CA1)

Authorized licensed use limited to: University of Southern California. Downloaded on March 22,2021 at 20:43:45 UTC from IEEE Xplore.  Restrictions apply. 



KIM et al.: HIPPOCAMPAL SHAPE MODELING BASED ON A PROGRESSIVE TEMPLATE SURFACE DEFORMATION AND ITS VERIFICATION 1257

Fig. 17. Anatomical landmarks manually assigned to investigate the inter-subject shape correspondence, placed on four representative surfaces. Landmarks are
located in: tip of the tail (L#1), inferior joint between cornu ammonis 1 (CA1) and subiculum (L#2), ventral joint between CA1 and subiculum (L#3) at the base
of the hippocampus head, dorsal joints between CA1, subiculum, and fimbria (L#4 and L#5), tip at the top of the hippocampal head in the boundary between
presubiculum and CA1 (L#6). A trained analyst performed the manual landmark assignment three times. Yellow dots show the average position of the assigned
landmarks on a surface model, and blue dots are the centers for calculating the fiducial localization error values. (a) Large #01. (b) Median. (c) Small #01. (d) Mean
Surface.

TABLE VII
FLE FOR INTRA-OPERATOR VARIABILITY

TABLE VIII
FLE FOR INTER-SURFACE VARIABILITY

and the fimbria on the left hippocampus (2.275 mm, L#5 in
Table VIII). The FLE difference ranged from 0.125 mm (L#5 in
Table VIII) to 0.640 mm (R#1 in Table VIII). The FLE differ-
ence for the inter-surface variability was similar to the average
FLE for the intra-operator variability (i.e., operator error during
the manual placement).

C. Hippocampal Shape Analysis With Cognitive Variables
1) Statistical Analysis Design: To assess the feasibility of

our method in the detection of subtle morphological defor-
mations of the hippocampus on normal older individuals, we
performed statistical shape analyses using the individualized
models and the cognitive parameters. For this analysis, we
performed the individual shape modeling, model normalization

using scale transformation and GPA, and shape deformity
computation.
With the shape deformity maps for individuals, we performed

two analyses: 1) Robust univariate linear regression to eval-
uate the association between local hippocampal shape defor-
mations and cognitive abilities, and determine the strength and
significance of these associations (identical as statistical test
three using the ADNI dataset, see Section IV-C4), and 2) Com-
parative analysis on extreme cognitive groups to explore the
magnitude and direction of these deformation patterns (similar
as statistical test 2 using the ADNI dataset, Section IV-C3).
For the first analysis, which included the whole sample, we
considered a regression model to determine how much cogni-
tion at age 72 can be explained by local hippocampal deforma-
tions. This model considered as independent variable the hip-
pocampal shape deformities at each vertex normalized by in-
tracranial volume, and as dependent variable a cognitive mea-
sure determined at age 72 years. As the three cognitive vari-
ables evaluated (namely g, g-speed, and g-memory) have high
degree of collinearity, they were analyzed separately. Age and
gender were used as covariates. The robust multilinear regres-
sion was performed using iteratively reweighted least squares
with a bisquare weighting function through the function ”ro-
bustfit” from MATLAB Statistical Toolbox.
For the second analysis, we selected the subjects for which

the values of the cognitive parameters were greater or less than
a standard deviation (SD) from the mean (i.e., poor versus good
cognitive performance within the normal range). The charac-
teristics of the total sample and number of subjects on each
group appear in Table IX. A -value map was generated using
the function “ranksum” from MATLAB Statistical Toolbox to
determine whether the local shape differences between groups
of extreme cognitive performance were or not significant. This
function performs a two-sided rank sum test equivalent to a
Mann-Whitney U-test.We also tested for significance in the vol-
umetric difference of each hippocampus (i.e., left and right) be-
tween each group using the Mann-Whitney U-test from the sta-
tistical package PASW Statistics 18.

D. Regression Analysis in the Whole Sample
Local hippocampal deformations were a strong predictor of

cognitive abilities in old age. While local predictors of cogni-
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Fig. 18. Maps of the strength and direction (above, represented by the nonstandardized beta coefficients) and significance (below, represented by the -value) of
the association between the cognitive abilities at age 72, represented by g, g-memory and g-speed, and local hippocampal shape deformation patterns, for left (LH)
and right (RH) hippocampi. Distribution map of standard errors was the same across all tests.

Fig. 19. Maps of the deformation patterns of the hippocampal shape for the subject groups with different cognitive abilities at old age. These were obtained
correcting for hippocampal size. Color scale represents the magnitude of the deformation (inwards blue and outwards red) with respect to the mean shape.

TABLE IX
SAMPLE CHARACTERISTICS AND NUMBER OF SUBJECTS ON EACH TEST GROUP

tive performance were accentuated in the dorso-lateral region
of the head for the left hippocampus, they were consistently ac-
centuated in the fimbria and antero-ventral region in the right
hippocampus as Fig. 18 shows. Results from the group analysis
show consistency and coincidence on the anatomical localiza-
tion of the regions where the local deformations were a strong
predictor of the cognitive variables (Figs. 18 and 19). The ranges

TABLE X
RANGE OF THE NONSTANDARDIZED REGRESSION BETA COEFFICIENTS

( ) AND STANDARD ERRORS (STD ERROR) OBTAINED FROM
EACH REGRESSION ANALYSIS

for the nonstandardized beta coefficients and standard errors for
each analysis are given in Table X.
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E. Shape Analysis in Groups With Extreme (Opposite)
Cognitive Performance
Hippocampal shapes from the extreme groups within the

normal aging sample showed strong differences on specific
regions of both hippocampi (left and right) for all cognitive
variables at age 72 years. The patterns were similar when the
shape models were corrected by hippocampal or head size.
The lateral anterior part of the joint between the CA1 with the
fimbria on the right hippocampus had pronounced deformations
for subjects with low versus high cognitive performance at old
age. For the right hippocampus, the CA1 deformations were
opposite and accentuated in the fimbria and for the dorso-lateral
tail and ventral and dorsal head, these last mainly for g and
g-speed. The direction and magnitude of the deformations are
shown in Fig. 19 while the strength and significance of their as-
sociation with cognitive abilities can be appreciated in Fig. 18.
Regions of significance obtained from the two-sided rank sum
test were, as expected, coincident with those obtained from the
univariate regression analysis on the whole sample. For the left
hippocampus, significant deformations in specific head (CA1)
regions were similar for g and g-speed. The regions of the left
fimbria that had accentuated deformations for g-speed were
not the same as those for g-memory. The hippocampal vol-
umes (left, right and total) of participants with g, g-speed, and
g-memory less than a SD from the mean were not significantly
different from those for which these cognitive parameters were
higher than a SD from the mean.

VI. DISCUSSION

Our shape modeling framework allows accurate adjust-
ments of the hippocampal surface models on a population of
healthy aging people with an accuracy of 95% volume overlap.
On the synthetic dataset, our method was comparable with
SPHARM-PDM, ShapeWorks and LDDMM-TI, although with
our method better results were obtained across a wider range of
the smoothing parameter than with these methods (see Fig. 7).
On the ADNI dataset, the volumetric difference between the
shape models generated by our method and the binary masks
was nearly 0 for controls,MCI andAD groups. LDDMM-TI and
SPHARM-PDM showed higher volumetric differences across
a wider range of values for all groups. Our model-to-image
registration method optimally reproduces the shape of the
hippocampus minimizing the geometrical differences with the
target structures obtained from the segmentations.
Hippocampal segmentations were affected by image noise

(i.e., holes), rough boundaries, sharp edges and inaccuracies
due to MRI artifacts, slice thickness and inter-slice gaps, all
which may distort the reproduction of the local shape details
and mask the true differences among shapes. SPHARM-PDM
applies the fill-hole and Gaussian smoothing operations to ob-
tain the initial surface models with spherical topology from the
segmentations [29]. However, these operations could not sepa-
rate the shape noises from the hippocampal surfaces effectively,
and they generated smooth hippocampal surface models em-
bracing the shape noises and the rough boundaries. This par-
tially explains why the surface models of SPHARM-PDMwere
less similar to the manual segmentations than the models gen-
erated by LDDMM-TI and our method [see Fig. 10(b)].

A previous study showed that the volumetric changes on
hippocampal atrophy are modest with rate of progression over
time relatively slow, depending mainly on age differences [67].
In agreement with this study, in our age-homogeneous sample
we did not find significant differences in hippocampal volumes
between subjects with extreme cognitive outcomes. With the
radial distance mapping technique used by [67], the morpho-
logical shape variations between Alzheimer's, mild cognitive
impaired and normal subjects were diffusively distributed
throughout the volumes and it was not possible to conclude
on local shape differences amongst groups of subjects. The
regions where our model identified statistically significant dif-
ferences amongst groups of dissimilar cognitive performance
are included within the regions with similar differences on
[67]. Moreover, our model shows a neater local deformation
pattern, similar to the deformation patterns obtained from using
LDDMM-TI and SPHARM-PDM.
In the experiments, we reproduced the ANCOVA analysis

published by Cho et al. [12] on the ADNI dataset, the results
obtained, although similar, are not identical. Several factors
caused these differences. Firstly, we did not use the segmen-
tations provided by the ADNI group. These were done in
standard space and there is evidence that quantitative analysis
on standard space introduces more partial volume effect errors
than if the analysis is done on native space, biasing the results
[68]. Secondly, we obtained the hippocampal binary masks on
this dataset using FSL-FIRST followed by manual rectification
of the incorrectly segmented boundaries. This method has been
extensively tested and validated, and was applied to the aging
sample from the LBC1936 Study, allowing comparability of
the results. And thirdly, it is not guaranteed that we used the
same sample as the one used by Cho et al. [12].
The strengths of this study are: 1) the shape modeling devel-

opment that allowed to robustly preserve the individual shape
details across the large variability characteristic of an aging pop-
ulation while preserving the anatomical correspondence across
subjects, 2) the analysis performed on a normal and relatively
healthy aging sample of community-dwelling individuals that
allowed us to test the sensitivity of the shape modeling frame-
work developed, 3) the analyses using a subsample from the
ADNI dataset, which facilitates the comparison of the results
with those obtained by other studies and 4) the fitting of the
mesh model to the reference binary masks was done fully auto-
matically, which guarantees the reproducibility of this approach
to hippocampal shape analysis on other datasets. This shape
modeling approach could be applied to other subcortical struc-
tures, such as caudate and thalamus.
Due to sample size constraints, the patterns of hippocampus

local deformations found here for each subgroup cannot be gen-
eralized. Nevertheless our results show that the shape modeling
framework developed here can be used in older people to detect
subtle specific hippocampal regional morphological variations.

VII. CONCLUSION
In this paper, we propose a mesh-to-volume registration

framework based on the progressive model deformation,
built-up on a multi-level neighborhood and flexible weighting
scheme for modeling the hippocampal shapes. It incorporates a
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large-to-small scale deformation to allow robustly restore the
individual shape details of the hippocampus while maintaining
the anatomical point-to-point correspondence across subjects.
Moreover, it can be argued that the large-to-small scale de-
formation helps to control the surface quality (the level of
shape detail representation) across surface while restoring the
major shape features of hippocampus properly. Our experiment
results indicate that our modeling method is accurate and
robust against noisy segmentations and large size and shape
variations in hippocampus, and is sensitive in detecting subtle
morphological changes on the structure.
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